B chromosomes and genome size in flowering plants.
نویسندگان
چکیده
B chromosomes are extra chromosomes found in some, but not all, individuals within a species, often maintained by giving themselves an advantage in transmission, i.e. they drive. Here we show that the presence of B chromosomes correlates to and varies strongly and positively with total genome size (excluding the Bs and corrected for ploidy) both at a global level and via a comparison of independent taxonomic contrasts. B chromosomes are largely absent from species with small genomes; however, species with large genomes are studied more frequently than species with small genomes and Bs are more likely to be reported in well-studied species. We controlled for intensity of study using logistic regression. This regression analysis also included effects of degree of outbreeding, which is positively associated with Bs and genome size, and chromosome number, which is negatively associated with Bs and genome size, as well as variable ploidy (more than one ploidy level in a species). Genome size, breeding system and chromosome number all contribute independently to the distribution of B chromosomes, while variable ploidy does not have a significant effect. The genome size correlates are consistent with reduced selection against extra DNA in species with large genomes and with increased generation of B sequences from large A genomes.
منابع مشابه
The distribution of B chromosomes across species.
In this review we look at the broad picture of how B chromosomes are distributed across a wide range of species. We review recent studies of the factors associated with the presence of Bs across species, and provide new analyses with updated data and additional variables. The major obstacle facing comparative studies of B chromosome distribution is variation among species in the intensity of cy...
متن کاملMolecular cytogenetics (FISH, GISH) of Coccinia grandis : a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants.
The independent evolution of heteromorphic sex chromosomes in 19 species from 4 families of flowering plants permits studying X/Y divergence after the initial recombination suppression. Here, we document autosome/Y divergence in the tropical Cucurbitaceae Coccinia grandis, which is ca. 3 myr old. Karyotyping and C-value measurements show that the C. grandis Y chromosome has twice the size of an...
متن کاملThe Evolutionary Consequences of Polyploidy
Polyploidization, the addition of a complete set of chromosomes to the genome, represents one of the most dramatic mutations known to occur. Nevertheless, polyploidy is well tolerated in many groups of eukaryotes. Indeed, the majority of flowering plants and vertebrates have descended from polyploid ancestors. This Review examines the short-term effects of polyploidization on cell size, body si...
متن کاملDyneins have run their course in plant lineage.
Flowering plant genomes lack flagellar and cytoplasmic dyneins as well as the proteins that make up the dynactin complex. The mechanisms for organizing the Golgi apparatus, establishing spindle poles, and moving nuclei, vesicles, and chromosomes in flowering plants must be fundamentally different from those in other systems where these processes are dependent upon dynein and dynactin.
متن کاملGenome Size and the Role of Transposable Elements
The lack of correlation between genome size and organismal complexity was early on dubbed the “C-value Paradox;” it holds even when gene number is considered instead of overall organismal complexity. The sequencing of large eukaryotic genomes has now conclusively solved this conundrum with the demonstration that most nuclear DNA comprises various classes of repeats, primarily transposable eleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2004